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Ÿ Weather forecaster predicts:

Probability of precipitation for tomorrow is 40%.

Ÿ The next day it either rains or it doesn’t rain.

Ÿ Looking at lots of days for which the weather forecaster’s 

PoP was 40%, on what percentage of those days did it 

actually rain? 

Calibration in weather forecasting
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Ÿ Prediction: 40%

Ÿ Actual:  40%

Not well calibrated: Ÿ Prediction: 40%

Ÿ Actual:  80%

Well calibrated:

J

L

Calibration in weather forecasting
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Ÿ Solution:

Ÿ Collect data from a large number of past days.

Ÿ For each day collect:  prediction                actual weather

Ÿ Train a calibration model.

Ÿ Use model to calibrate future predictions.

Calibration in weather forecasting
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Ÿ If a model is a parsimonious parametric model.

Ÿ If there is a large amount of training data relative to the 

number of parameter values to be estimated.

Ÿ If the assumptions of the model are not violated by the 

population distributions.

Ÿ Then the output of the model will be well calibrated.

Calibration in general
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Ÿ Models often fit complex distributions to high-dimensional 

data.

Ÿ The amount of case-relevant training data is often small 

relative to the number of parameter values to be 

estimated.

Ÿ The assumptions of the models may be violated.

Ÿ The output of the models are often not well calibrated.

Calibration in forensic science
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Ÿ Solution:

Ÿ Treat the output of the first (complex) model as 

uncalibrated log likelihood ratios (scores).

Ÿ Use a parsimonious model to convert the scores to 

calibrated log likelihood ratios. 

Calibration in forensic science
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Calibration in forensic science

questioned-source feature vector(s)

known-source feature vector(s)

relevant-population feature vectors

score

feature to score model

test score

same-origin scores

different-origin scores

calibrated log
likelihood ratio

score to log likelihood ratio model
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Ÿ Take data that reflect the relevant population and 

conditions of the questioned-source specimen and 

known-source sample in the case.

Ÿ Construct same-source pairs and different-source pairs.

Ÿ Use the first model to calculate a score for each pair.

Ÿ Use the resulting same-source scores and different-source 

scores to train the calibration model.

Calibration in forensic science
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Ÿ The scores are unidimensional.

Ÿ The calibration model is parsimonious.

Ÿ There is a large amount of data relative to the number of 

parameter values to be estimated.

Ÿ The output of the calibration model is well calibrated.

Calibration in forensic science
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Ÿ Important condition:

Ÿ The data used for training the calibration model must  

reflect the relevant population and the conditions of the 

questioned-source specimen and known-source sample 

in the case.

Ÿ If not, the system will be miscalibrated.

Calibration in forensic science
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Ÿ Important condition:

Ÿ The first model must output scores which are uncalibrated 

log likelihood ratios. They must take account of both:

○ the similarity between the questioned-source 

specimen and the known-source sample

○ their typicality with respect to the relevant population

Ÿ Similarity-only scores cannot be used.

Calibration in forensic science
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Ÿ Similarity-only scores cannot be used.

Ÿ Morrison G.S., Enzinger E. (2018). Score based procedures for the calculation of forensic 

likelihood ratios – Scores should take account of both similarity and typicality. 

Science & Justice, 58, 47–58. http://dx.doi.org/10.1016/j.scijus.2017.06.005

Ÿ Neumann C., Ausdemore M. (2020). Defence against the modern arts: The curse of 

statistics –Part II: ‘Score-based likelihood ratios’. Law, Probability and Risk, 19, 

21–42. http://dx.doi.org/10.1093/lpr/mgaa006

Ÿ Neumann C., Hendricks J., Ausdemore M. (2020). Statistical support for conclusions in 

fingerprint examinations. In Banks D., Kafadar K., Kaye D.H., Tackett M. (Eds.) 

Handbook of Forensic Statistics (Ch. 14, pp. 277–324). Boca Raton, FL: CRC. 

https://doi.org/10.1201/9780367527709
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Ÿ forensic voice comparison

Ÿ fingerprints

Ÿ DNA

Ÿ mRNA

Ÿ glass fragments

Ÿ mobile telephone colocation

Ÿ human perception and judgement

Calibration in forensic science
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Ÿ González-Rodríguez J., Rose P., Ramos D., Toledano D.T., Ortega-García J. (2007). 
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Language Processing, 15, 2104–2115. https://doi.org/10.1109/TASL.2007.902747

Ÿ Morrison G.S. (2013). Tutorial on logistic-regression calibration and fusion: 

Converting a score to a likelihood ratio. Australian Journal of Forensic Sciences, 

45, 173–197. http://dx.doi.org/10.1080/00450618.2012.733025 

https://arxiv.org/abs/2104.08846

Ÿ Ypma R.J.F., Maaskant - van Wijk P.A., Gill R., Sjerps M., van den Berge M. (2021). 

Calculating LRs for presence of body fluids from mRNA assay data in mixtures. 

Forensic Science International: Genetics, 52, article 102455. 

https://doi.org/10.1016/j.fsigen.2020.102455
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Ÿ What is a well-calibrated likelihood-ratio system?

Ÿ The likelihood ratio of the likelihood ratio is the likelihood 

ratio.

Well-calibrated likelihood-ratio systems

LR =  
f ( LR | H  )s

f ( LR | H  )d

_________
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distributions.

Ÿ Both same-source and different-

source distributions are Gaussian, 
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Calibrating likelihood-ratio systems
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Ÿ Score [x] to ln(LR) [y] mapping function:

y = a + bx

b =  
μ  – μs d

2
σ

_____

Ÿ Where μ , μ , σ are the statistics for the scores.s d

a = – b 
μ  + μs d

2
_____

Calibrating likelihood-ratio systems
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Ÿ Score [x] to ln(LR) [y] 

mapping function:

y = a + bx

b =  
6 – 3

2
1

_____
a = – b 

6 + 3

2
_____

Calibrating likelihood-ratio systems
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Ÿ ln(LR) [x] to ln(LR) [y] 

mapping function:

y = a + bx

b =  
4.5 – (–4.5)

2
3

_________
a = – b 

4.5 + (–4.5)

2
_________

Calibrating likelihood-ratio systems
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Ÿ Score [x] to ln(LR) [y] mapping function:

y = a + bx

Calibrating likelihood-ratio systems

Ÿ In practice, logistic regression is commonly used to 

calculate a and b.

Ÿ It is more robust to violations of the assumptions of 

Gaussian distributions with the same variance.
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Ÿ Morrison G.S., Enzinger E., Hughes V., Jessen M., Meuwly D., 

Neumann C., Planting S., Thompson W.C., van der Vloed D., 

Ypma R.J.F., Zhang C., Anonymous A., Anonymous B. 

[Carlström Plaza F., González-Rodríguez J., Ramos D., Roberts 

P., Rose P., Solewicz Y., Vergeer P.] (2021). Consensus on 

validation of forensic voice comparison. Science & Justice, 61, 

229–309. https://doi.org/10.1016/j.scijus.2021.02.002

Consensus on validation
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Ÿ “In order for the forensic-voice-comparison system to 

answer the specific question formed by the propositions 

in the case, the output of the system should be well 

calibrated.” 

Ÿ “A forensic-voice-comparison system should be calibrated 

using a statistical model that forms the final stage of the 

system”

Consensus on validation
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Ÿ “Data used for training the calibration model ... should be 

sufficiently representative of the relevant population for 

the case, and sufficiently reflective of the conditions of 

the questioned-speaker and known-speaker recordings in 

the case, that, when the system is used to compare the 

questioned- and known-speaker recordings, the resulting 

likelihood ratio will be a reasonable answer to the 

question posed by the propositions.”

Consensus on validation
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Ÿ Forensic Science Regulator (2021). Codes of practice and 

conduct: Development of evaluative opinions (FSR-C-118 

Issue 1). Birmingham, UK: Forensic Science Regulator. 

https://www.gov.uk/government/publications/development-of-

evaluative-opinions

Development of evaluative opinions
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Ÿ “probabilities have been assigned on the basis of a data set of 

sufficient relevance, quality and size”

Ÿ “probabilities have been assigned on the basis of structured data 

set(s) which are limited in their relevance, quality and/or size 

but are available for inspection by another expert”

Ÿ “probabilities have been assigned on the basis of unstructured 

observations from experience, which are not available for 

inspection by another expert”

Development of evaluative opinions
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Ÿ “probabilities have been assigned on the basis of a data set of 

sufficient relevance, quality and size”

Development of evaluative opinions
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questioned-source feature vector(s)

known-source feature vector(s)

relevant-population feature vectors

score

feature to score model

test score

same-origin scores

different-origin scores

calibrated log
likelihood ratio

score to log likelihood ratio model

Development of evaluative opinions
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Ÿ “probabilities have been assigned on the basis of structured data 

set(s) which are limited in their relevance, quality and/or size 

but are available for inspection by another expert”

Development of evaluative opinions
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Ÿ “The validity of a structured data set (including any local data set) 

from previous casework, a ‘knowledge base’ ..., shall be 

calibrated regularly by conducting studies using ground truth 

data as described by Evett [22].”

Ÿ  “Knowledge Base 

A structured database of information and assigned probabilities, 

ordered according to casework conditions. The knowledge base 

is calibrated through regular review of its content through 

experimentation under controlled conditions [22].” 

Development of evaluative opinions
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Ÿ “Calibration involves regular review of sections of the content by 

conducting experimentation using ground truth data under 

controlled conditions and comparing to relevant sections of the 

knowledge base. 

Ÿ Such ground truth experimentation enables the knowledge base to 

be updated and expert opinions to be checked against a snapshot 

of known-source data.”  

Development of evaluative opinions
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Ÿ [22] Evett I.W. (2015). The logical foundations of forensic science: Towards 

reliable knowledge. Philosophical Transactions of the Royal Society B, 

370, article 20140263. http://dx.doi.org/10.1098/rstb.2014.0263

Ÿ This is a high-level review paper.

Ÿ It does not provide detail about how to implement:

– calibration of a knowledge base

– use of a knowledge base to assign probabilities in the context 

of a case

Development of evaluative opinions
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Ÿ “probabilities have been assigned on the basis of unstructured 

observations from experience, which are not available for 

inspection by another expert”

Development of evaluative opinions
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Ÿ “In instances where an expert is unable to demonstrate any 

... calibration of their expertise, the commissioning party 

and the court shall be made aware that their opinion is 

uncalibrated. ” 

Development of evaluative opinions
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Development of evaluative opinions

questioned-source item(s)

known-source item(s)

experience

uncalibrated
likelihood ratio

human perception and judgement
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Ÿ “Where the expert does not have relevant and robust 

experimental data to inform probabilities, they may have 

sufficient personal experience and knowledge to enable 

them to compare the relative frequencies of their 

observations given that each of the propositions were 

true. The manner in which an expert should justify 

the use of observations from experience is by regular 

calibration of their expertise” 

Development of evaluative opinions
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Ÿ “Experts should participate in regular calibration of their 

expertise [22] [23] through, for example, blind 

proficiency tests that are representative of the 

complexity encountered in casework.”

Development of evaluative opinions
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Ÿ [22] Evett I.W. (2015). The logical foundations of forensic science: Towards 

reliable knowledge. Philosophical Transactions of the Royal Society B, 

370, article 20140263. http://dx.doi.org/10.1098/rstb.2014.0263

Ÿ “subjective assignments of probability are central to the 

forensic science paradigm but the driving principle for 

progress is that they should be conditioned not by 

casework experience, but by calibration under controlled 

conditions.”

Development of evaluative opinions
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questioned-source item(s)

known-source item(s)

experience

score

human perception and judgement

test score

same-origin scores

different-origin scores

calibrated log
likelihood ratio

score to log likelihood ratio model
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questioned-source item(s)

known-source item(s)
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calibrated log
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Thank You
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