Symposium on calibration in forensic science

Forensic Data Science Laboratory Aston Institute for Forensic Linguistics

Geoffrey Stewart Morrison

Forensic Data Science Laboratory Aston Institute for Forensic Linguistics

Weather forecaster predicts:
 Probability of precipitation for tomorrow is 40%.

- The next day it either rains or it doesn't rain.
- Looking at lots of days for which the weather forecaster's PoP was 40%, on what percentage of those days did it actually rain?

Well calibrated:

• Prediction: 40%

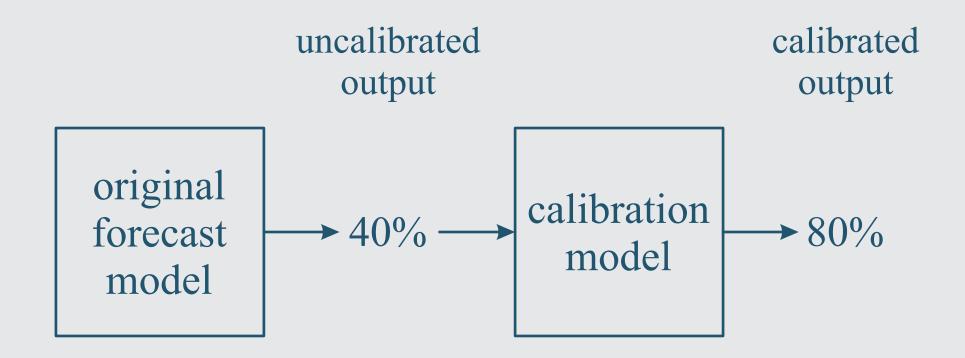
• Actual:

40%

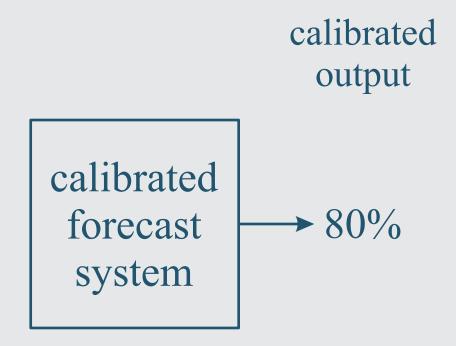
Not well calibrated: • Prediction: 40%

80% • Actual:

• Solution:


Collect data from a large number of past days.

• For each day collect: prediction actual weather


• Train a calibration model.

• Use model to calibrate future predictions.

Calibration in general

- Peterson W.W., Birdsall T.G., Fox W.C. (1954). **The theory of signal detectability**. *Transactions of the IRE Professional Group on Information Theory*, 4, 171–211.

 https://doi.org/10.1109/TIT.1954.1057460
- Birdsall T.G. (1973). The theory of signal detectability: ROC curves and their character. Technical Report No. 177. Cooley Electronics Laboratory, Department of Electrical and Computer Engineering, The University of Michigan. Ann Arbor, Michigan.
- Dawid A.P. (1982). **The well-calibrated Bayesian**. *Journal of the American Statistical Association*, 77, 605–610. http://doi.org/10.1080/01621459.1982.10477856
- Good I.J. (1985). **Weight of evidence: A brief survey**. In Bernardo J.M., DeGroot M.H., Lindley D.V., Smith A.F.M. (Eds.), *Bayesian Statistics 2* (pp. 249–270). Elsevier.

Calibration in general

• If a model is a parsimonious parametric model.

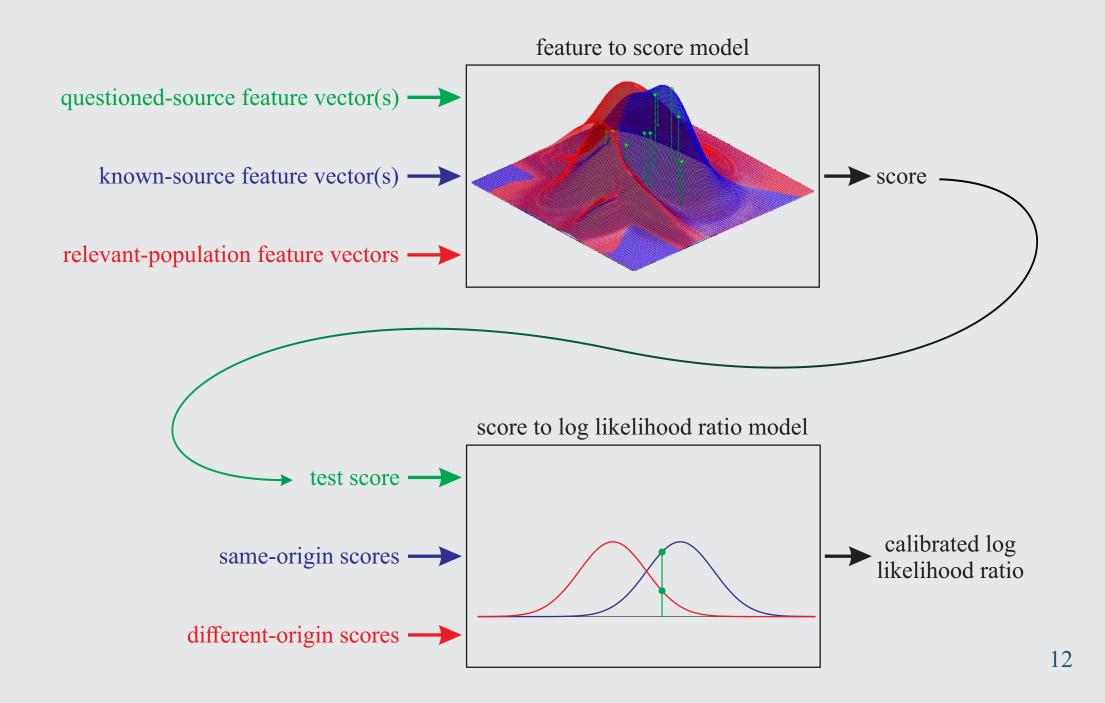
• If there is a large amount of training data relative to the number of parameter values to be estimated.

• If the assumptions of the model are not violated by the population distributions.

• Then the output of the model will be well calibrated.

• Models often fit complex distributions to high-dimensional data.

• The amount of case-relevant training data is often small relative to the number of parameter values to be estimated.


• The assumptions of the models may be violated.

• The output of the models are often not well calibrated.

• Solution:

• Treat the output of the first (complex) model as uncalibrated log likelihood ratios (scores).

• Use a parsimonious model to convert the scores to calibrated log likelihood ratios.

- Take data that reflect the relevant population and conditions of the questioned-source specimen and known-source sample in the case.
- Construct same-source pairs and different-source pairs.
- Use the first model to calculate a score for each pair.
- Use the resulting same-source scores and different-source scores to train the calibration model.

• The scores are unidimensional.

• The calibration model is parsimonious.

• There is a large amount of data relative to the number of parameter values to be estimated.

• The output of the calibration model is well calibrated.

• Important condition:

• The data used for training the calibration model must reflect the relevant population and the conditions of the questioned-source specimen and known-source sample in the case.

• If not, the system will be miscalibrated.

- Important condition:
- The first model must output scores which are uncalibrated log likelihood ratios. They must take account of both:
 - o the **similarity** between the questioned-source specimen and the known-source sample
 - o their typicality with respect to the relevant population
- Similarity-only scores cannot be used.

- Similarity-only scores cannot be used.
- Morrison G.S., Enzinger E. (2018). Score based procedures for the calculation of forensic likelihood ratios Scores should take account of both similarity and typicality.
 Science & Justice, 58, 47–58. http://dx.doi.org/10.1016/j.scijus.2017.06.005
- Neumann C., Ausdemore M. (2020). Defence against the modern arts: The curse of statistics –Part II: 'Score-based likelihood ratios'. Law, Probability and Risk, 19, 21–42. http://dx.doi.org/10.1093/lpr/mgaa006
- Neumann C., Hendricks J., Ausdemore M. (2020). Statistical support for conclusions in fingerprint examinations. In Banks D., Kafadar K., Kaye D.H., Tackett M. (Eds.)
 Handbook of Forensic Statistics (Ch. 14, pp. 277–324). Boca Raton, FL: CRC.
 https://doi.org/10.1201/9780367527709

- forensic voice comparison
- fingerprints
- DNA
- mRNA
- glass fragments
- mobile telephone colocation
- human perception and judgement

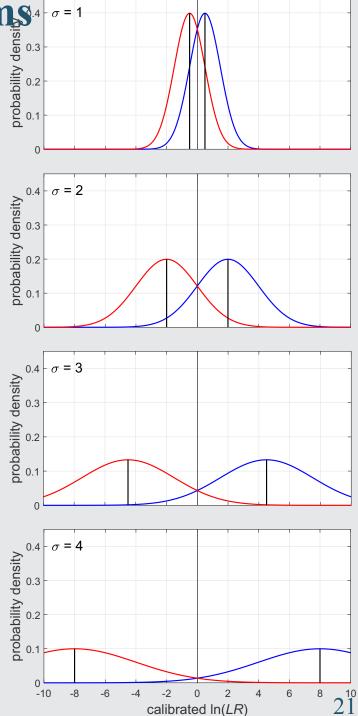
- González-Rodríguez J., Rose P., Ramos D., Toledano D.T., Ortega-García J. (2007).
 Emulating DNA: Rigorous quantification of evidential weight in transparent and testable forensic speaker recognition. *IEEE Transactions on Audio, Speech, and Language Processing*, 15, 2104–2115. https://doi.org/10.1109/TASL.2007.902747
- Morrison G.S. (2013). Tutorial on logistic-regression calibration and fusion:
 Converting a score to a likelihood ratio. Australian Journal of Forensic Sciences,
 45, 173–197. http://dx.doi.org/10.1080/00450618.2012.733025
 https://arxiv.org/abs/2104.08846
- Ypma R.J.F., Maaskant van Wijk P.A., Gill R., Sjerps M., van den Berge M. (2021).
 Calculating LRs for presence of body fluids from mRNA assay data in mixtures.
 Forensic Science International: Genetics, 52, article 102455.
 https://doi.org/10.1016/j.fsigen.2020.102455

Well-calibrated likelihood-ratio systems

• What is a well-calibrated likelihood-ratio system?

• The likelihood ratio of the likelihood ratio is the likelihood ratio.

$$LR = \frac{f(LR \mid H_{s})}{f(LR \mid H_{d})}$$


Well-calibrated likelihood-ratio systems.

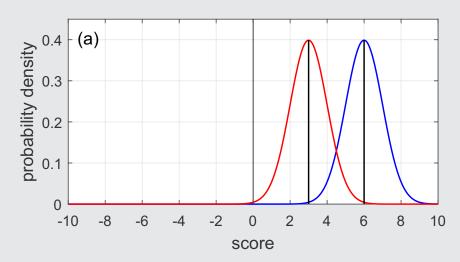
• Perfectly calibrated ln(LR)

distributions.

 Both same-source and differentsource distributions are Gaussian, and they have the same variance.

$$\mu_{\mathrm{d}} = -\frac{\sigma^2}{2}$$

$$\mu_{\mathrm{s}} = +\frac{\sigma^2}{2}$$



(a)
Uncalibrated scores.

$$\mu_{\rm d} = 3$$

$$\mu_{\rm s} = 6$$

$$\sigma = 1$$

(a)
Uncalibrated scores.

$$\mu_{\rm d} = 3$$

$$\mu_{\rm s} = 6$$

$$\sigma = 1$$

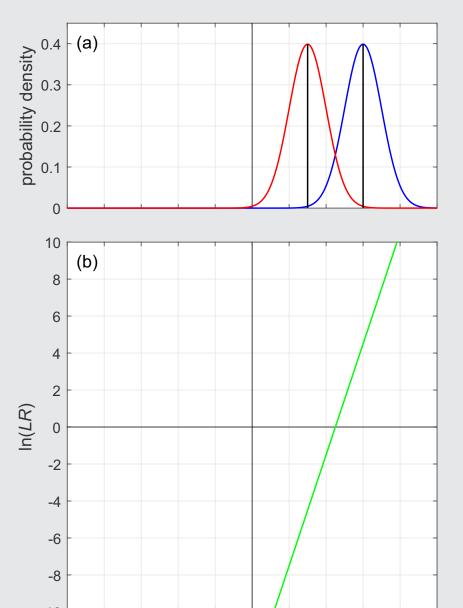
(b)

Score to

ln(LR)

mapping

function.


-10

-8

-6

-2

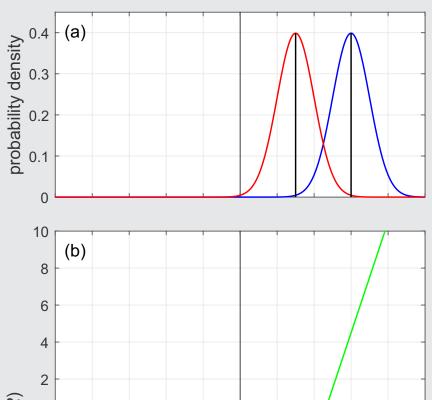
score

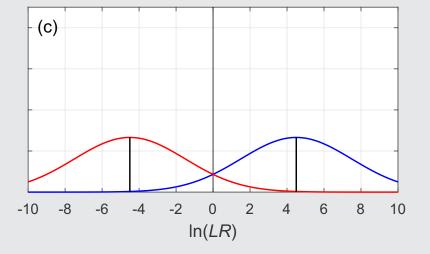
10

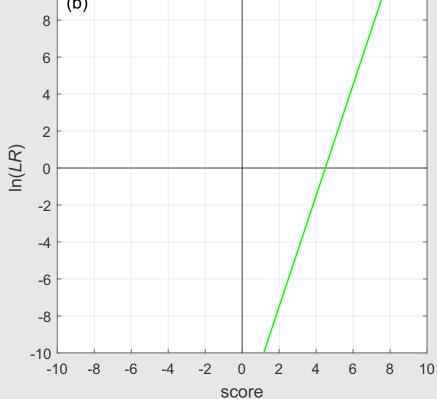
6

8

(c)


Calibrated


ln(LR).


$$\mu_{\rm d} = -4.5$$
 $\mu_{\rm s} = +4.5$

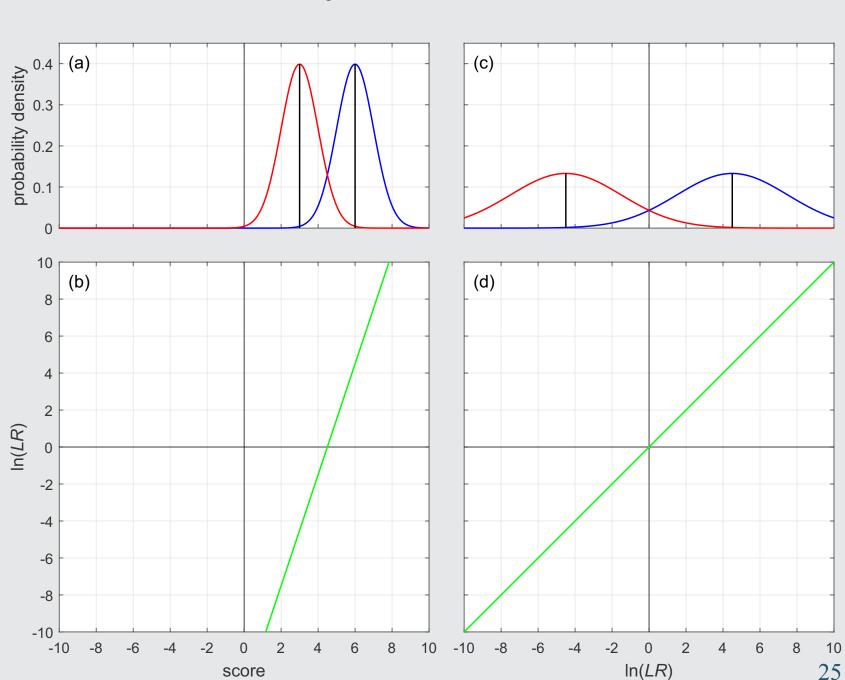
$$\mu_{\rm s} = +4.5$$

$$\sigma = 3$$

(c)

Calibrated

ln(LR).


$$\mu_{\rm d} = -4.5$$

$$\mu_{\rm s} = +4.5$$

$$\sigma = 3$$

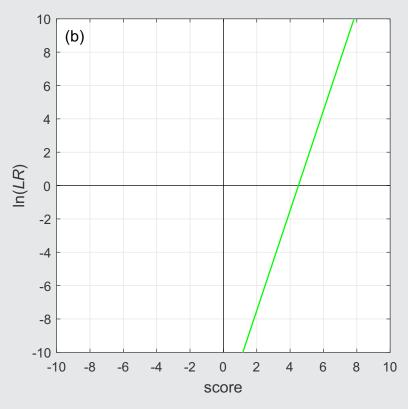
(d) $\ln(LR) \text{ to}$ $\ln(LR)$ mapping

function.

• Score [x] to ln(LR)[y] mapping function:

$$y = a + bx$$

$$a = -b \frac{\mu_s + \mu_d}{2} \qquad b = \frac{\mu_s - \mu_d}{\sigma^2}$$


• Where μ_s , μ_d , σ are the statistics for the scores.

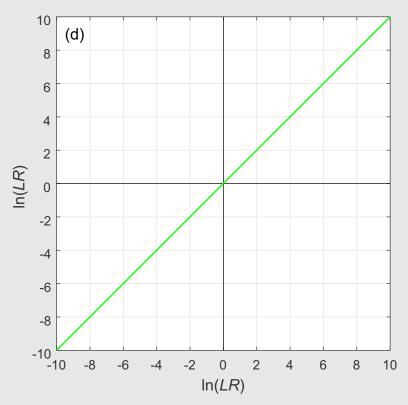
Score [x] to ln(LR) [y]mapping function:

$$y = a + bx$$

$$a = -b \frac{6+3}{2}$$

$$a = -3 \times 4.5$$

$$b = \frac{6-3}{1^2}$$


$$b=3$$

• ln(LR)[x] to ln(LR)[y]mapping function:

$$y = a + bx$$

$$a = -b \frac{4.5 + (-4.5)}{2}$$
 $b = \frac{4.5 - (-4.5)}{3^2}$

$$a = 0$$

$$b = \frac{4.5 - (-4.5)}{3^2}$$

$$b=1$$

• Score [x] to ln(LR)[y] mapping function:

$$y = a + bx$$

• In practice, logistic regression is commonly used to calculate *a* and *b*.

• It is more robust to violations of the assumptions of Gaussian distributions with the same variance.

Consensus on validation

• Morrison G.S., Enzinger E., Hughes V., Jessen M., Meuwly D., Neumann C., Planting S., Thompson W.C., van der Vloed D., Ypma R.J.F., Zhang C., Anonymous A., Anonymous B. [Carlström Plaza F., González-Rodríguez J., Ramos D., Roberts P., Rose P., Solewicz Y., Vergeer P.] (2021). Consensus on validation of forensic voice comparison. Science & Justice, 61, 229–309. https://doi.org/10.1016/j.scijus.2021.02.002

Consensus on validation

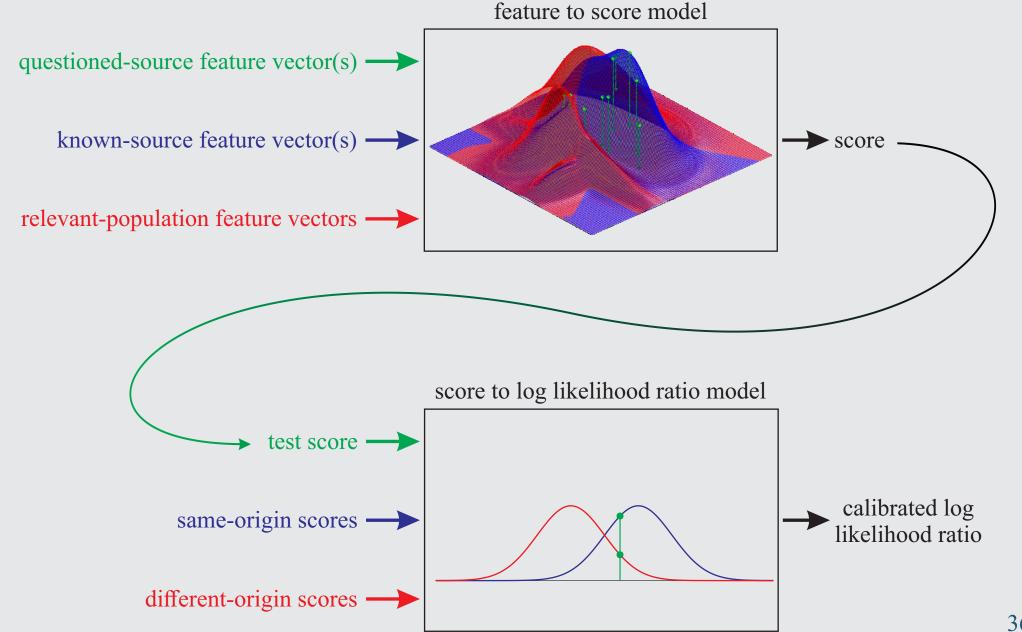
• "In order for the forensic-voice-comparison system to answer the specific question formed by the propositions in the case, the output of the system should be well calibrated."

• "A forensic-voice-comparison system should be calibrated using a statistical model that forms the final stage of the system"

Consensus on validation

• "Data used for training the calibration model ... should be sufficiently representative of the relevant population for the case, and sufficiently reflective of the conditions of the questioned-speaker and known-speaker recordings in the case, that, when the system is used to compare the questioned- and known-speaker recordings, the resulting likelihood ratio will be a reasonable answer to the question posed by the propositions."

 Forensic Science Regulator (2021). Codes of practice and conduct: Development of evaluative opinions (FSR-C-118 Issue 1). Birmingham, UK: Forensic Science Regulator. https://www.gov.uk/government/publications/development-of-evaluative-opinions


"probabilities have been assigned on the basis of a data set of sufficient relevance, quality and size"

"probabilities have been assigned on the basis of structured data set(s) which are limited in their relevance, quality and/or size but are available for inspection by another expert"

"probabilities have been assigned on the basis of unstructured observations from experience, which are not available for inspection by another expert"

"probabilities have been assigned on the basis of a data set of sufficient relevance, quality and size"

"probabilities have been assigned on the basis of <u>structured data</u>

<u>set(s)</u> which are limited in their relevance, quality and/or size

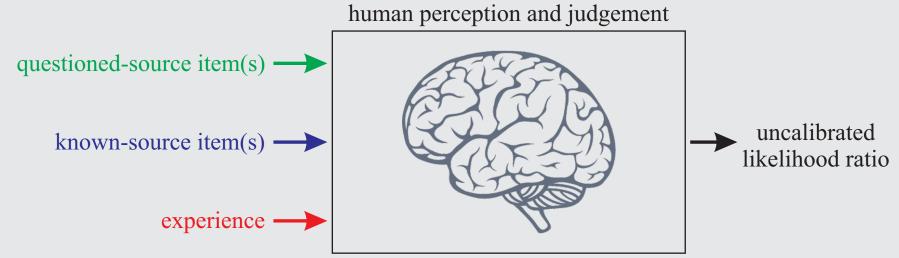
but are available for inspection by another expert"

• "The validity of a <u>structured data set</u> (including any local data set) from previous casework, a '<u>knowledge base</u>' ..., shall be calibrated regularly by conducting studies using ground truth data as described by Evett [22]."

• "Knowledge Base

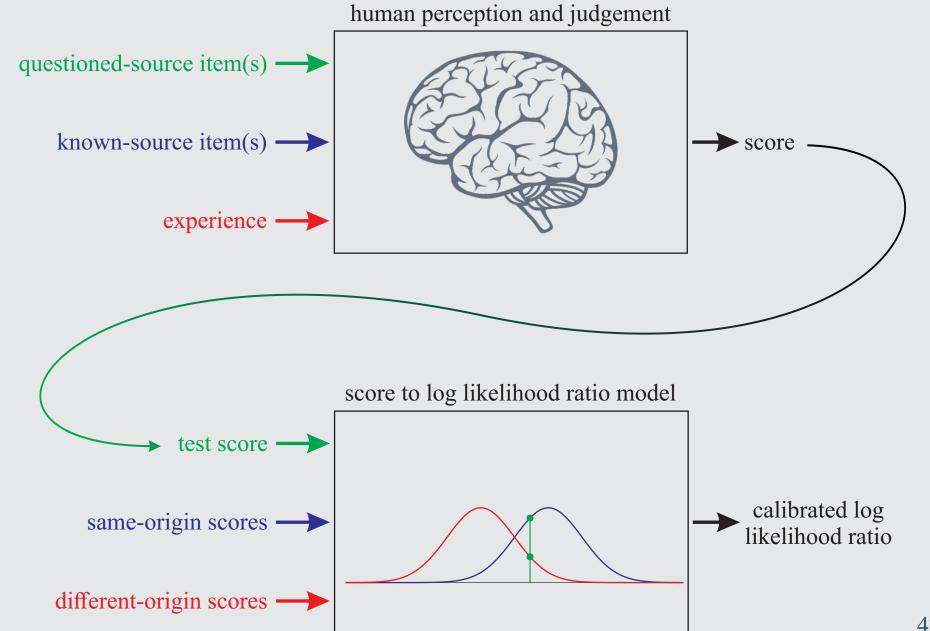
A <u>structured database</u> of information and assigned probabilities, ordered according to casework conditions. The knowledge base is calibrated through regular review of its content through experimentation under controlled conditions [22]."

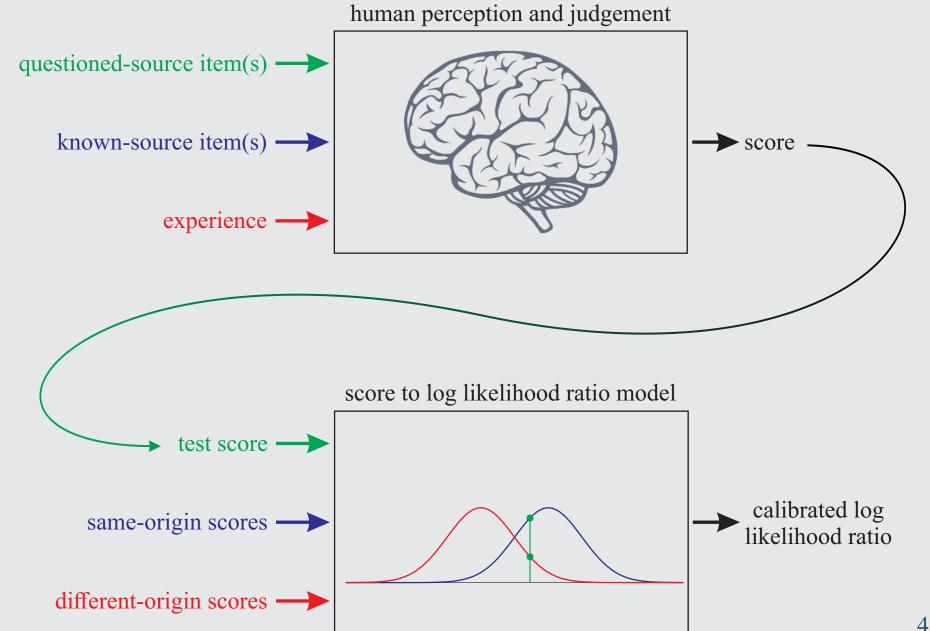
- "Calibration involves regular review of sections of the content by conducting experimentation using ground truth data under controlled conditions and comparing to relevant sections of the knowledge base.
- Such ground truth experimentation enables the knowledge base to be updated and expert opinions to be checked against a snapshot of known-source data."


- [22] Evett I.W. (2015). **The logical foundations of forensic science: Towards** reliable knowledge. *Philosophical Transactions of the Royal Society B*, 370, article 20140263. http://dx.doi.org/10.1098/rstb.2014.0263
- This is a high-level review paper.
- It does not provide detail about how to implement:
 - calibration of a knowledge base
 - use of a knowledge base to assign probabilities in the context
 of a case

"probabilities have been assigned on the basis of unstructured observations from experience, which are not available for inspection by another expert"

• "In instances where an expert is unable to demonstrate any ... calibration of their expertise, the commissioning party and the court shall be made aware that their opinion is uncalibrated."


• "Where the expert does not have relevant and robust experimental data to inform probabilities, they may have sufficient personal experience and knowledge to enable them to compare the relative frequencies of their observations given that each of the propositions were true. The manner in which an expert should justify the use of observations from experience is by regular calibration of their expertise"


 "Experts should participate in regular calibration of their expertise [22] [23] through, for example, blind proficiency tests that are representative of the complexity encountered in casework."

- [22] Evett I.W. (2015). **The logical foundations of forensic science: Towards reliable knowledge**. *Philosophical Transactions of the Royal Society B*, 370, article 20140263. http://dx.doi.org/10.1098/rstb.2014.0263
- "subjective assignments of probability are central to the forensic science paradigm but the driving principle for progress is that they should be conditioned not by casework experience, but by calibration under controlled conditions."

Thank You