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Automatic Speaker Recognition
n Standard architechture: scores

q Ideally:
n If C y S are same identity (same-source), higher score
n If C y S are different identities (different-source), lower score

q Thus, a score allows discrimination
q Not enough in forensics: a likelihood ratio (LR) is needed
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LR with Automatic Speaker Recognition
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n Objective: discriminating scores
q Score-based architecture
q Improve discrimination
q So-called automatic speaker 

recognition
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n Objective: transform scores into likelihood ratios
q Warning: LRs must be well calibrated

q Cllr: a popular measure of performance (the lower the better)
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n Objective: adequate forensic reports
q Probabilistic weight of the evidence
q Following recommendations (ENFSI)
q Validation
q Accreditation

Discrimination
Level

Presentation
Level

Forensic
Level

LR with Automatic Speaker Recognition

6



A Very Simplified
(Yet Illustrative)

Example
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n Police investigations lead to a suspect

n Incriminating recordings wire-tapped
in the Madrid region (trace)
q Population: potential sources of the

speech
n Speakers from Madrid region, with

similar characteristics with questioned
speech

q Language
q Accent
q ...

q Digital Wire-Tapping (SITEL, Spanish
nationwide system)

Simulated Case
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S
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n Recordings are taken from the suspect (reference speech)

q Typically, controlled recordings
n But very different conditions as for the questioned speech

q Could be previous wire-tappings where authorship is accepted
n Similar conditions as questioned speech

Example: Ahumada III Database (Real Cases)

Simulated Case

S

S
(reference)

C
(trace)

D. Ramos, J. Gonzalez-Rodriguez, J. Gonzalez-Dominguez and J. J. Lucena-Molina, "Addressing 
database mismatch in forensic speaker recognition with Ahumada III: a public real-case database 
in Spanish", in Proceedings of Interspeech 2008, pp. 1493-1496, September 2008.
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n Step 1: the automatic system
computes a score
q No meaning on itself

n 10 with respect to what?
q In general, non-interpretable

n Its range of variation is not
known a priori

LR Computation

Automatic
Speaker

Recognition

C

s=10
S

n Step 2: compute the LR
q In this example, we use a Gaussian model

Different-Speaker
Scores

Same-Speaker
Scores

s=10 Weak support
to prosecutor
proposition

(“same-source”)

𝐿𝑅 =
0.35
0.15

= 2.33
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Data for LR Computation
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Data for LR Computation
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LR Model
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Selection of traning data is
fundamental for LR computation!



A Guideline for the Validation
of LR Methods

(With Emphasis in Automatic Methods)
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Guideline: Validation of Forensic LR Methods
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Terminology

Guideline: Validation of Forensic LR Methods
n Objective

q Determine if a LR method is valid to be used in casework
q All the validation process should be documented for transparency
q Towards standardization of procedures (for biometrics)

n Validation process
q Based on Empirical Testing

n Data: still an issue
q Performance assessment

n Performance characteristics
q What aspect of performance should be measured?

n Performance metrics
q How to measure a characteristic?

n Performance graphical representations
q Ok, show me an illustrating plot
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Emphasis on Forensic Data
*  Lab (development) performance
*  Followed by forensic performance
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Scope of validation &
Validation criteria

Validation start

Method 
development

Validation 
decision

Validation stage

Validation – a process
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Performance 
Characteristic 

Performance 
Metric

Graphical 
Representation

Accuracy Cllr, EER
ECE plot 
DET plot

Discriminating 
power Cllrmin ECEmin plot

Calibration Cllrcal Tippett plot

Robustness
Cllr, EER
LR range

ECE plot
DET plot
Tippett plot

Coherence
Cllr, EER

ECE plot
DET plot
Tippett plot

Generalization Cllr, EER
ECE plot
DET plot

Performance Characteristics and Measures
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Performance 
Characteristic 

Performance 
Metric

Graphical 
Representation

Accuracy Cllr, EER
ECE plot 
DET plot

Discriminating 
power Cllrmin ECEmin plot

Calibration Cllrcal Tippett plot

Robustness
Cllr, EER
LR range

ECE plot
DET plot
Tippett plot

Coherence
Cllr, EER

ECE plot
DET plot
Tippett plot

Generalization Cllr, EER
ECE plot
DET plot

Performance Characteristics and Measures
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Not restricted to these!
The Guideline is thought

to be open to
modifications

All measures require a
validation set of LR values

(computed automatically from
a validation database)
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Experimental Set-Up
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Experimental Set-Up
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LR Model

Hp training
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Some Performance
Metrics and Representations
(Included in the Guideline)
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Performance 
Characteristic 

Performance 
Metric

Graphical 
Representation

Accuracy
Cllr ECE plot 

Discriminating 
power

Cllrmin

EER
ECEmin plot
DET plot

Calibration Cllrcal Tippett plot

Robustness

Cllr
EER
LR range

ECE plot
DET plot
Tippett plot

Coherence
Cllr
EER

ECE plot
DET plot
Tippett plot

Generalization
Cllr
EER

ECE plot
DET plot

Guideline for Validation: Performance

Primary

Secondary
(measure
behavior
of the primary)
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Empirical Cross-Entropy Plots and Cllr

D. Ramos, J. Gonzalez-Rodriguez, G. Zadora and C. Aitken. “Information-theoretical Assessment
of the Performance of Likelihood Ratios”. Journal of Forensic Sciences (under minor revision)

Calibration
(red – blue)

Discrimination
(blue curve)

ECE curve: Accuracy
(the lower the better)
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n http://arantxa.ii.uam.es/~dramos/software.html

n Summarizing metric: Cllr

Cllr

minCllr

calCllr
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Calibration

Tippett Plots

Discrimination

Accuracy

WARNING: Tippett plots do 
not measure them explicitly!

n Cumulative distribution of LR values

n Summarizing metric:
n Rates of misleading evidence
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Calibration

Tippett Plots (Type II representation)

Discrimination

Accuracy

WARNING: Tippett plots do 
not measure them explicitly!

n Cumulative distribution of LR values
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