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Calibration and Bayes decisions

Imagine a binary decision 𝑫𝒋 with j = 1,2, based on costs for errors 

and probabilities for 𝑯𝒊

Truth

Cost notation  𝑪𝑫𝑯

Decision↓ 𝑯𝟏 𝑯𝟐

𝑫𝟏 0 𝑪𝟏𝟐

𝑫𝟐 𝑪𝟐𝟏 0



Calibration and Bayes decisions: theory

Bayes decisions minimize perceived (or expected) costs:

𝑫𝟏 if 𝑪𝟏𝟐𝑷 𝑯𝟐|𝑳𝑹 < 𝑪𝟐𝟏𝑷 𝑯𝟏|𝑳𝑹

Else: 𝑫𝟐

With known priors the decision is based on the likelihood ratio: 

𝑫𝟏 if 𝑳𝑹 >
𝑪𝟏𝟐

𝑪𝟐𝟏
×

𝑷 𝑯𝟐

𝑷 𝑯𝟏
= 𝑳𝑹𝒕𝒉

Else: 𝑫𝟐

Decision↓ 𝑯𝟏 𝑯𝟐

𝑫𝟏 0 𝑪𝟏𝟐

𝑫𝟐 𝑪𝟐𝟏 0



Calibration and Bayes decisions: practice

Does this minimize costs in reality?

• Variance?  Repeating the decision process reduces variance.

• Bias (leads to increased costs)?

• Not when: 𝑷 𝑯𝟏|𝑳𝑹 and 𝑷 𝑯𝟐|𝑳𝑹 are well-calibrated!

Well-calibrated meaning: 𝒇𝒓𝒆𝒒 𝑯𝟏|𝑷 𝑯𝟏|𝑳𝑹 = 𝑿 = 𝑿, for all 𝑿

Focussing on LR-systems: 
𝒇𝒓𝒆𝒒 𝑳𝑹=𝒀|𝑯𝟏

𝒇𝒓𝒆𝒒 𝑳𝑹=𝒀|𝑯𝟐
= 𝒀, for all 𝒀 (‘The LR of the LR is the 

LR’)

Decision↓ 𝑯𝟏 𝑯𝟐

𝑫𝟏 0 𝑪𝟏𝟐

𝑫𝟐 𝑪𝟐𝟏 0



Why measure calibration?

• Three reasons why:
1. If we do not mean ’The LR of the LR is the LR’, updating prior odds with Bayes 
rule would result in (very) misleading posterior odds
2. We are not optimal from a Bayesian decision perspective
3. We could do worse than not updating by Bayes rule

• Calibration should be measured in order to be sure to prevent the above



Can one mess things up by being ill-calibrated?

Compare using an LR-system to not using an LR-system

With LRs:

𝑫𝟏 if 𝑪𝟏𝟐 × 𝑷 𝑯𝟐|𝑳𝑹 < 𝑪𝟐𝟏 × 𝑷 𝑯𝟏|𝑳𝑹
Else: 𝑫𝟐

Only priors

𝑫𝟏 if 𝑪𝟏𝟐 × 𝑷 𝑯𝟐 < 𝑪𝟐𝟏 × 𝑷 𝑯𝟏

Else: 𝑫𝟐

We can compare the expected costs of the two…



Can one mess things up by being ill-calibrated?

Well-calibrated LRs according to experiment:

𝐿𝑅 𝑂𝑏𝑠"1" =
90

100
∗
1000

10
= 90

𝐿𝑅 𝑂𝑏𝑠"2" =
10

100
∗
1000

990
= 0.101

LR-system for a binary observation:

𝐿𝑅 𝑂𝑏𝑠"1" = 90
𝐿𝑅 𝑂𝑏𝑠"2" = 0.101

Experiment 𝑯𝟏 𝑯𝟐

Obs “1” 90 10

Obs “2” 10 990



Can one mess things up by being ill-calibrated?

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 (𝐿𝑅 = 1 𝑎𝑙𝑤𝑎𝑦𝑠)

𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑠𝑡𝑠 (𝐿𝑅 − 𝑠𝑦𝑠𝑡𝑒𝑚)

Brummer PhD thesis
Vergeer et al. S&J56(2016)482



Can one mess things up by being ill-calibrated?

Well-calibrated
𝐿𝑅 𝑂𝑏𝑠"1" = 90
𝐿𝑅 𝑂𝑏𝑠"2" = 0.101

Overconfident
𝐿𝑅 𝑂𝑏𝑠"1" = 𝟏𝟎𝟎𝟎
𝐿𝑅 𝑂𝑏𝑠"2" = 0.101

Too conservative
𝐿𝑅 𝑂𝑏𝑠"1" = 𝟏𝟎
𝐿𝑅 𝑂𝑏𝑠"2" = 0.101

Data from experiment remains the same



Can one mess things up by being ill-calibrated?

Overconfident
𝐿𝑅 𝑂𝑏𝑠"1" = 1000
𝐿𝑅 𝑂𝑏𝑠"2" = 0.101In certain cost/prior 

scenarios using the LR-
system results in worse 
performance!

Problem:
- Cost/prior scenario is 

variable.
- Cost/prior scenario is 

unknown.

Solution:
Measure calibration!  Well-

calibrated LR-systems 
perform better than prior-
only for all cost/prior 
scenario’s.



Measuring calibration of probabilities: a visual tool

A ‘calibration plot’ for probabilities

Measuring calibration of 
probabilities

Collect stated P’s for rain and the 
truth “rain” or “no rain” for a 
sequence of days.

Plot 𝑓𝑟𝑒𝑞 𝑟𝑎𝑖𝑛|𝑃𝑟𝑎𝑖𝑛 = 𝑋 versus 𝑋

‘Binning and counting frequencies’



Measuring calibration of LR-
systems

- Visual representations
‘LR of LR = LR’ ?

- All based on some form of calculating 
observed LRs based on 
counts/frequencies.

- Main difference: automated binning or
predetermined binning?

- PAV transform  automated binning 

with attractive theoretical properties

See e.g.: 
Dawid JASA 77 (1982) 605
Ramos et al. FSI 230 (2013) 156
Vergeer et al. SciJus 57 (2017) 181
Ramos et al. Entropy 20 (2018) 208
Hannig et al. FSI Gen 7 (2019) 572



Measuring calibration of LR-systems

- Metrics: summary statistics that measure calibration for the LR-system as a whole
• Cllr_cal (Brummer and Du Preez, CSL 20 (2006) 230; 

Ramos et al, Entropy 20 (2018) 208)

• Rates of misleading evidence: 𝑃 𝐿𝑅 ≥ 𝑘|𝐻𝑑 ≤
1

𝑘
and 𝑃 𝐿𝑅 ≤

1

𝑘
|𝐻𝑝 ≤

1

𝑘
for k = 2 

(Royall, “Statistical evidence: a likelihood paradigm”)

• Metrics: 
σ𝐻𝑑

Ι𝐿𝑅≥2

𝑚
and 

σ𝐻𝑝 Ι𝐿𝑅≤12
𝑛

(“MislHd” and “MislHp”)

• Moments of LR-distributions: Ε 𝐿𝑅𝑛|𝐻𝑝 = Ε 𝐿𝑅𝑛+1|𝐻𝑑 (Good, Bayes. Stat. 2 (1985) 249)

• 1 = Ε 𝐿𝑅|𝐻𝑑  Metric: 
σ𝐻𝑑

𝐿𝑅

𝑚
(“Mom0”)

• Ε
1

𝐿𝑅
|𝐻𝑝 = 1  Metric: 

σ𝐻𝑝 𝐿𝑅
−1

𝑛
(“Mommin1”)

• devPAV (Vergeer et al, FSI 321 (2021) 110722)



Measuring calibration of LR-systems
- devPAV

the red surface area 
divided by the length of spline ‘a’.

Remember from physics class:

ҧ𝑣 =
∆𝑥

∆𝑡
=
𝑡׬ 𝑣 𝑡 𝑑𝑡

∆𝑡

devPAV = ‘The average deviation of the 
PAV-transform from the identity line’



Random LLRs drawn from well- and ill-calibrated data

- Assumption: well-calibrated LLR-distributions 
are normal

𝑆𝑆 ~ N 𝜇𝑠, 𝜎𝑠 , and

𝐷𝑆 ~ N 𝜇𝑑, 𝜎𝑑 ,

𝜎: = 𝜎𝑠 = 𝜎𝑑 and 𝜇𝑠 = −𝜇𝑑 applies.

P  perfectly calibrated
R  to all LLRs a constant C (C > 0) is added
L  to all LLRs a constant C (C > 0) is subtracted
E  all LLRs are multiplied by C (C > 1)
W  all LLRs are divided by C (C > 1)



Mom0 and mommin1

N_SS = 300, N_DS = 
300 ×299

2
, 𝜇𝑠 = 6 (EER = 4.2%) 



MislHp and MislHd

N_SS = 300, N_DS = 
300 ×299

2
, 𝜇𝑠 = 6 (EER = 4.2%) 



Cllr_cal and devPAV

N_SS = 300, N_DS = 
300 ×299

2
, 𝜇𝑠 = 6 (EER = 4.2%) 



Stability: mom0 and mislHd

N_SS = 300, N_DS = 
300 ×299

2
, 𝜇𝑠varied



Stability: Cllr_cal and devPAV

N_SS = 300, N_DS = 
300 ×299

2
, 𝜇𝑠varied



Conclusion

• Measuring calibration is necessary to ensure that an 
LR-system adds information over the prior odds

• Visual representations of calibration are all based on 
binning and reading off relative frequencies

• Several metrics are used in the literature to 
measure calibration of LR-systems

• Studied rates of misleading evidence and 
moments of LR-distributions lack differentiating 
abilities or are relatively unstable

• Cllr_cal and devPAV differentiate well and are 
relatively stable

• All metrics become unstable at some point when 
increasing discrimination of LR-systems


